Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plants (Basel) ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904010

RESUMEN

The health-promoting properties of natural plant bioactive compounds are mainly attributable to their ability to counteract oxidative stress. This is considered a major causative factor in aging and aging-related human diseases, in which a causal role is also ascribed to dicarbonyl stress. This is due to accumulation of methylglyoxal (MG) and other reactive dicarbonyl species, leading to macromolecule glycation and cell/tissue dysfunction. The glyoxalase (GLYI) enzyme, catalyzing the rate-limiting step of the GSH-dependent MG detoxification pathway, plays a key role in cell defense against dicarbonyl stress. Therefore, the study of GLYI regulation is of relevant interest. In particular, GLYI inducers are important for pharmacological interventions to sustain healthy aging and to improve dicarbonyl-related diseases; GLYI inhibitors, allowing increased MG levels to act as proapoptotic agents in tumor cells, are of special interest in cancer treatment. In this study, we performed a new in vitro exploration of biological activity of plant bioactive compounds by associating the measurement of their antioxidant capacity (AC) with the evaluation of their potential impact on dicarbonyl stress measured as capability to modulate GLYI activity. AC was evaluated using TEAC, ORAC, and LOX-FL methods. The GLYI assay was performed using a human recombinant isoform, in comparison with the recently characterized GLYI activity of durum wheat mitochondria. Different plant extracts were tested, obtained from plant sources with very high phytochemical content ('Sun Black' and wildtype tomatoes, black and 'Polignano' carrots, and durum wheat grain). Results showed high antioxidant properties of the tested extracts, associated with different modes (no effect, activation, and inhibition) and effectiveness in modulating both GLYI activity sources. Overall, results indicate the GLYI assay as an advisable and promising tool for researching plant foods as a source of natural antioxidant compounds acting as GLYI enzymatic regulators to be used for dietary management associated the treatment of oxidative/dicarbonyl-promoted diseases.

2.
Front Plant Sci ; 13: 934523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832233

RESUMEN

Glyoxalase I (GLYI) catalyzes the rate-limiting step of the glyoxalase pathway that, in the presence of GSH, detoxifies the cytotoxic molecule methylglyoxal (MG) into the non-toxic D-lactate. In plants, MG levels rise under various abiotic stresses, so GLYI may play a crucial role in providing stress tolerance. In this study, a comprehensive genome database analysis was performed in durum wheat (Triticum durum Desf.), identifying 27 candidate GLYI genes (TdGLYI). However, further analyses of phylogenetic relationships and conserved GLYI binding sites indicated that only nine genes encode for putative functionally active TdGLYI enzymes, whose distribution was predicted in three different subcellular compartments, namely cytoplasm, plastids and mitochondria. Expression profile by qRT-PCR analysis revealed that most of the putative active TdGLYI genes were up-regulated by salt and osmotic stress in roots and shoots from 4-day-old seedlings, although a different behavior was observed between the two types of stress and tissue. Accordingly, in the same tissues, hyperosmotic stress induced an increase (up to about 40%) of both GLYI activity and MG content as well as a decrease of GSH (up to about -60%) and an increase of GSSG content (up to about 7-fold) with a consequent strong decrease of the GSH/GSSG ratio (up to about -95%). Interestingly, in this study, we reported the first demonstration of the existence of GLYI activity in highly purified mitochondrial fraction. In particular, GLYI activity was measured in mitochondria from durum wheat (DWM), showing hyperbolic kinetics with Km and Vmax values equal to 92 ± 0.2 µM and 0.519 ± 0.004 µmol min-1 mg-1 of proteins, respectively. DWM-GLYI resulted inhibited in a competitive manner by GSH (Ki = 6.5 ± 0.7 mM), activated by Zn2+ and increased, up to about 35 and 55%, under salt and osmotic stress, respectively. In the whole, this study provides basis about the physiological significance of GLYI in durum wheat, by highlighting the role of this enzyme in the early response of seedlings to hyperosmotic stress. Finally, our results strongly suggest the existence of a complete mitochondrial GLYI pathway in durum wheat actively involved in MG detoxification under hyperosmotic stress.

3.
Plants (Basel) ; 10(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34961071

RESUMEN

Durum wheat is a staple crop for the Mediterranean diet because of its adaptability to environmental pressure and for its large use in cereal-based food products, such as pasta and bread, as a source of calories and proteins. Durum wheat whole grains are also highly valued for their peculiar amount of dietary fiber and minerals, as well as bioactive compounds of particular interest for their putative health-beneficial properties, including polyphenols, carotenoids, tocopherols, tocotrienols, and phytosterols. In Mediterranean environments, durum wheat is mostly grown under rainfed conditions, where the crop often experiences environmental stresses, especially water deficit and soil salinity that may induce a hyperosmotic stress. In particular, changes in C and N accumulation due to these abiotic conditions, during grain filling, can influence starch and storage protein amount and composition in durum wheat caryopsis, thus influencing yield and quality traits. Recent advancements regarding the influence of water deficit and salinity stress on durum wheat are critically discussed. In particular, a focus on stress-induced changes in (a) grain protein content and composition in relation to technological and health quality; (b) starch and dietary fiber accumulation and composition; (c) phytochemical composition; (d) health-related grain micronutrient accumulation, such as Fe and Zn.

4.
Plant Foods Hum Nutr ; 76(3): 354-362, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34363561

RESUMEN

Current in vitro methodologies neglect or subestimate the contribution of betalains to antioxidant capacity in foods because they do not reflect their in vivo biological mechanisms. In this study, we assessed the sensibility of the lipoxygenase-fluorescein (LOX-FL) method towards betalains, phenolic compounds and ascorbic acid from Opuntia spp. fruits; and (ii) the antioxidant capacity of peel and pulp extracts from Opuntia ficus-indica L. Mill (var. Fresa, Colorada and Blanco) and Opuntia stricta var. Dillenii; by comparing the LOX-FL method to traditional antioxidant methods (ORAC and TEAC). The spectrophotometric monitoring of the LOX-FL reaction avoided interference caused by betalain pigments. Indicaxanthin and betanin showed high antiperoxidative and radical scavenging mechanisms in the LOX-FL assay. O. stricta var. Dillenii tissues the highest antioxidant capacity which correlated with betanin content. ORAC and TEAC antioxidant methods were less sensible towards betalain antioxidant activity. To our knowledge, this is the first time the LOX-FL antioxidant method has been used on betalains and betalain-rich foods.


Asunto(s)
Opuntia , Antioxidantes , Betalaínas , Frutas , Lipooxigenasa , Extractos Vegetales/farmacología
5.
Plants (Basel) ; 10(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802658

RESUMEN

The carrot is one of the most cultivated vegetables in the world. Black or purple carrots contain acylated anthocyanins which are of special interest to the food industry for their stability and nutraceutical characteristics. Anthocyanin-rich fruits and vegetables have gained popularity in the last ten years, due to the health benefits they provide. In this paper, the characterizations of the bioactive compounds and antioxidant capacities of different anthocyanin-containing carrots (a black carrot-BC, and a local purple carrot, the "Polignano" carrot-PC), compared to the commercial orange carrot (OC) (lacking of anthocyanins), are reported. The anthocyanin profiles of the polyphenolic extracts of BC and PC were similar, but differences were observed at quantitative levels. The total anthocyanin content in BC was more than twice that in PC (13.84 ± 0.61 vs. 5.64 ± 0.48 mg K Eq. g-1 DW). Phenolic acids (mostly chlorogenic acid) were also present at high level in anthocyanin-rich carrots compared to OC. High polyphenol content accounted also for a high reducing capacity (evaluated by Folin-Ciocalteu reagent, FCR), and antioxidant capacity (evaluated by TEAC and ORAC assays) which were the highest for BC (FCR value: 16.6 ± 1.1 mg GAE. g-1 DW; TEAC: 76.6 ± 10.6 µmol TE. g-1 DW; ORAC: 159.9 ± 3.3 µmol TE. g-1 DW). All carrot genotypes (mostly OC) were rich in carotenoids (BC 0.14 ± 0.024; PC 0.33 ± 0.038; OC 1.29 ± 0.09 mg. g-1 DW), with predominance of α and ß-carotene, in OC, and lutein in BC. PC showed the highest malic acid and sugar (glucose plus fructose) content. In conclusion, while BC is remarkable for nutraceutical features, the local genotype ("Polignano" carrot) is worth considering in genetic biodiversity conservation programme.

6.
Genes (Basel) ; 12(3)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668883

RESUMEN

Fusarium verticillioides is one of the most relevant fungal species in maize responsible for ear, stalk and seedling rot, as well as the fumonisin contamination of kernels. Plant lipoxygenases (LOX) synthesize oxylipins that play a crucial role in the regulation of defense mechanisms against pathogens and influence the outcome of pathogenesis. To better uncover the role of these signaling molecules in maize resistance against F. verticillioides, the functional characterization of the 9-LOX gene, ZmLOX4, was carried out in this study by employing mutants carrying Mu insertions in this gene (named as UFMulox4). In this regard, the genotyping of five UFMulox4 identified the mutant UFMu10924 as the only one having an insertion in the coding region of the gene. The impact of ZmLOX4 mutagenesis on kernel defense against F. verticillioides and fumonisin accumulation were investigated, resulting in an increased fungal susceptibility compared to the inbred lines W22 and Tzi18. Moreover, the expression of most of the genes involved in the LOX, jasmonic acid (JA) and green leaf volatiles (GLV) pathways, as well as LOX enzymatic activity, decreased or were unaffected by fungal inoculation in the mutant UFMu10924. These results confirm the strategic role of ZmLOX4 in controlling defense against F. verticillioides and its influence on the expression of several LOX, JA and GLV genes.


Asunto(s)
Resistencia a la Enfermedad , Lipooxigenasas/genética , Zea mays/genética , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Fenotipo , Proteínas de Plantas/genética , Plantones/genética , Plantones/microbiología , Análisis de Secuencia de ARN , Zea mays/microbiología
7.
Plants (Basel) ; 11(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009101

RESUMEN

Durum wheat is one of the most commonly cultivated species in the world and represents a key commodity for many areas worldwide, as its grain is used for production of many foods, such as pasta, bread, couscous, and bourghul. Durum wheat grain has a relevant role in the human diet, providing carbohydrates, proteins, lipids, fibres, vitamins, and minerals, as well as highly valued bioactive compounds contributing to a healthy diet. Durum wheat is largely cultivated in the Mediterranean basin, where it is mainly grown under rain-fed conditions, thus currently undergoing drought stress, as well as soil salinity, which can hamper yield potential and influence the qualitative characteristics of grain. When plants suffer drought and/or salinity stress, a condition known as hyperosmotic stress is established at cellular level. This leads to the accumulation of ROS thus generating in turn an oxidative stress condition, which can ultimately result in the impairment of cellular integrity and functionality. To counteract oxidative damage due to excessive ROS production under stress, plants have evolved a complex array of both enzymatic and non-enzymatic antioxidant mechanisms, working jointly and synergically for maintenance of ROS homeostasis. Enhancement of antioxidant defence system has been demonstrated as an adaptive mechanism associated to an increased tolerance to hyperosmotic stress. In the light of these considerations, this review provides a concise overview on recent advancements regarding the role of the ascorbate-glutathione cycle and the main antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) in durum wheat response to drought and salt stresses that are expected to become more and more frequent due to the ongoing climate changes.

8.
Antioxidants (Basel) ; 9(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321766

RESUMEN

In order to contribute to the understanding of the antioxidant behavior of plant bioactive compounds with respect to specific subcellular targets, in this study, their capability to protect aconitase activity from oxidative-mediated dysfunction was evaluated for the first time in plant mitochondria. Interest was focused on the Krebs cycle enzyme catalyzing the citrate/isocitrate interconversion via cis-aconitate, as it possesses a [4Fe-4S]2+ cluster at the active site, making it an early and highly sensitive target of reactive oxygen species (ROS)-induced oxidative damage. In particular, the effect on the aconitase reaction of five natural phenols, including ferulic acid, apigenin, quercetin, resveratrol, and curcumin, as well as of the isothiocyanate sulforaphane, was investigated in highly purified mitochondria obtained from durum wheat (DWM). Interestingly, a short-term (10 min) DWM pre-treatment with all investigated compounds, applied at 150 µM (75 µM in the case of resveratrol), completely prevented aconitase damage induced by a 15 min exposure of mitochondria to 500 µM H2O2. Curcumin and quercetin were also found to completely recover DWM-aconitase activity when phytochemical treatment was performed after H2O2 damage. In addition, all tested phytochemicals (except ferulic) induced a significant increase of aconitase activity in undamaged mitochondria. On the contrary, a relevant protective and recovery effect of only quercetin treatment was observed in terms of the aconitase activity of a commercial purified mammalian isoform, which was used for comparison. Overall, the results obtained in this study may suggest a possible role of phytochemicals in preserving plant mitochondrial aconitase activity, as well as energy metabolism, against oxidative damage that may occur under environmental stress conditions. Further investigations are needed to elucidate the physiological role and the mechanism responsible for this short-term protective effect.

9.
Molecules ; 23(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544620

RESUMEN

In the last decades, increasing demand of antioxidant-rich foods and growing interest in their putative role in prevention of degenerative diseases have promoted development of methods for measuring Antioxidant Capacity (AC). Nevertheless, most of these assays use radicals and experimental conditions far from the physiological ones, and are able to estimate only one or a few antioxidant mechanisms. On the other hand, the novel LOX/RNO and LOX⁻FL methods, based on secondary reactions between the soybean lipoxygenase (LOX)-1 isoenzyme and either 4-nitroso-N,N-dimethylaniline (RNO) or fluorescein (FL), may provide a more comprehensive AC evaluation. In fact, they are able to detect simultaneously many antioxidant functions (scavenging of some physiological radical species, iron ion reducing and chelating activities, inhibition of the pro-oxidant apoenzyme) and to highlight synergism among phytochemicals. They are applied to dissect antioxidant properties of several natural plant products: food-grade antioxidants, cereal and pseudocereal grains, grain-derived products, fruits. Recently, LOX⁻FL has been used for ex vivo AC measurements of human blood samples after short- and long-term intakes of some of these foods, and the effectiveness in improving serum antioxidant status was evaluated using the novel Antioxidant/Oxidant Balance (AOB) parameter, calculated as an AC/Peroxide Level ratio. An overview of data is presented.


Asunto(s)
Antioxidantes/farmacología , Productos Biológicos/farmacología , Biotecnología/métodos , Lipooxigenasa/metabolismo , Humanos
10.
Front Plant Sci ; 9: 961, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026749

RESUMEN

Sirtuins are NAD+-dependent deacetylase enzymes that have gained considerable interest in mammals for their recognized importance in gene silencing and expression and in cell metabolism. Conversely, knowledge about plant sirtuins remains limited, although a sirtuin-mediated regulation of mitochondrial energy metabolism has been recently reported in Arabidopsis. However, so far, no information is available about direct measurement of intracellular plant sirtuin activity, i.e., in cell extracts and/or subcellular organelles. In this study, a novel approach was proposed for reliable evaluation of native sirtuin activity in plant samples, based on (i) an adequate combinatory application of enzymatic assays very different for chemical basis and rationale and (ii) a comparative measurement of activity of a recombinant sirtuin isoform. In particular, two sirtuin assays were applied, based on bioluminescence emission and Homogeneous Time-Resolved Fluorescence (HTRF®) technology, and the human SIRT1 isoform (hSIRT1) was used for comparison. For the first time in plants, this new approach allowed measuring directly a high and nicotinamide-sensitive sirtuin activity in highly purified mitochondrial fraction obtained from durum wheat (WM). WM-sirtuin activity was 268 ± 10 mU⋅mg-1 protein, as measured by HTRF® assay, and 166 ± 12 ng hSIRT1 eq.⋅mg-1 protein, as evaluated by the bioluminescent assay and calculated on the basis of the hSIRT1 calibration curve. Moreover, effects of resveratrol and quercetin, reported as potent hSIRT1 activators, but whose activation mechanism is still debated, were also studied. No effect of resveratrol was found on both WM-sirtuin and hSIRT1 activities, while only a slight increase, up to about 20%, of hSIRT1 activity by quercetin was observed. In the whole, results of this study indicate that WM may represent a good system for studying native plant sirtuins. In fact, the high yield of purified WM and their high sirtuin activity, together with use of microplate readers, allow performing a large number of measurements from the same preparation, so qualifying the approach for application to large-scale high-throughput screening. Moreover, WM may also represent an excellent tool to investigate physiological role and modulation of plant sirtuins under experimental conditions more physiologically relevant with respect to recombinant purified enzymes.

11.
Food Chem ; 221: 278-288, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979203

RESUMEN

Effectiveness in improving serum antioxidant status of two functional pastas was evaluated by the novel Antioxidant/Oxidant Balance (AOB) parameter, calculated as Antioxidant Capacity (AC)/Peroxide Level ratio, assessed here for the first time. In particular, Bran Oleoresin (BO) and Bran Water (BW) pastas, enriched respectively with either lipophilic (tocochromanols, carotenoids) or hydrophilic/phenolic antioxidants extracted from durum wheat bran, were studied. Notably, BO pasta was able to improve significantly (+65%) serum AOB during four hours after intake similarly to Lisosan G, a wheat antioxidant-rich dietary supplement. Contrarily, BW pasta had oxidative effect on serum so as conventional pasta and glucose, thus suggesting greater effectiveness of lipophilic than hydrophilic/phenolic antioxidants under our experimental conditions. Interestingly, no clear differences between the two pastas were observed, when AC measurements of either serum after pasta intake or pasta extracts by in vitro assays were considered, thus strengthening effectiveness and reliability of AOB approach.


Asunto(s)
Antioxidantes/análisis , Oxidantes/química , Fenoles/análisis , Suero/química , Triticum/química , Adulto , Antioxidantes/química , Carotenoides , Suplementos Dietéticos , Femenino , Humanos , Masculino , Oxidación-Reducción , Extractos Vegetales/química , Reproducibilidad de los Resultados , Adulto Joven
12.
Data Brief ; 9: 818-822, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27872878

RESUMEN

This article reports experimental data related to the research article entitled "Different effectiveness of two pastas supplemented with either lipophilic or hydrophilic/phenolic antioxidants in affecting serum as evaluated by the novel Antioxidant/Oxidant Balance approach" (M.N. Laus, M. Soccio, M. Alfarano, A. Pasqualone, M.S. Lenucci, G. Di Miceli, D. Pastore, 2016) [1]. Antioxidant status of blood serum of seven healthy subjects was evaluated during four hours after consumption of two functional pastas, supplemented with either bran oleoresin or bran water extract obtained from durum wheat. For comparison, the effect of a non-supplemented reference pasta was also evaluated, as well as the effects of glucose, of the wheat grain dietary supplement Lisosan G, and of the reference pasta consumed together with Lisosan G. Serum antioxidant status was evaluated by measuring both the serum antioxidant capacity, using LOX-FL, ORAC and TEAC methods, and the serum oxidant status, assessed as peroxide level.

13.
Front Plant Sci ; 6: 1072, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26648958

RESUMEN

In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about 15 years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP). Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous) and tissues/organs (etiolated and green) have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel) are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs) and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane toward the matrix, so collapsing membrane potential (ΔΨ), the main component of the protonmotive force (Δp) in plant mitochondria; moreover, cooperation between PmitoKATP and the K(+)/H(+) antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS) production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate hyperosmotic stress (mannitol or NaCl), PmitoKATP was found to be activated by ROS, so inhibiting further large-scale ROS production according to a feedback mechanism; moreover, a stress-activated phospholipase A2 may generate FFAs, further activating the channel. In conclusion, a main property of PmitoKATP is the ability to keep in balance the control of harmful ROS with the mitochondrial/cellular bioenergetics, thus preserving ATP for energetic needs of cell defense under stress.

14.
Plant Foods Hum Nutr ; 70(2): 207-14, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25771798

RESUMEN

The QUENCHERABTS (QUick, Easy, New, CHEap and Reproducible) approach for antioxidant capacity (AC) determination is based on the direct reaction of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation with fine solid food particles. So, it may resemble the antioxidant action in foods or in human gastrointestinal trait. Here, the QUENCHER approach was used to study AC of durum wheat (Triticum durum Desf.) grains. Firstly, it was assessed which kind of antioxidants determines QUENCHER response. This has been performed by comparing AC measured by QUENCHERABTS and that measured by classical TEACABTS (Trolox equivalent antioxidant capacity) in four different extracts from whole flour of 10 durum wheat varieties containing: lipophilic, hydrophilic, insoluble-bound phenolic (IBP) and free-soluble phenolic (FSP) compounds. QUENCHERABTS data were unrelated to AC of water-extractable antioxidants and weakly correlated (r = 0.405, P < 0.05) to AC of the lipophilic ones; on the contrary, QUENCHERABTS response was mainly related to AC of IBP (r = 0.907, P < 0.001) and to a lesser extent of FSP extracts (r = 0.747, P < 0.001). Consistently, correlation was also found with the phenolic content of IBP and FSP (r = 0.760, P < 0.001 and r = 0.522, P < 0.01, respectively), thus confirming that QUENCHERABTS assay mainly assesses AC due to IBP. So, this assay was used in a first screening study to compare AC of bioactive IBP of thirty-six genotypes/landraces covering a century of cultivation in Italy. Interestingly, no relevant AC difference between modern and old genotypes was found, thus suggesting that a century of plant breeding did not decrease phenol-dependent health potential in durum wheat.


Asunto(s)
Antioxidantes/análisis , Fenoles/análisis , Triticum/química , Granos Enteros/química , Harina/análisis , Genotipo , Italia , Triticum/clasificación
15.
Int J Mol Sci ; 15(5): 8186-215, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24821541

RESUMEN

In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoK(ATP) neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoK(ATP) to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoK(ATP) and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Plantas/metabolismo , Fuerza Protón-Motriz , Triticum/metabolismo , Adenosina Trifosfato/metabolismo , Potencial de la Membrana Mitocondrial , Translocasas Mitocondriales de ADP y ATP/metabolismo , Canales de Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triticum/citología
16.
J Plant Res ; 127(1): 159-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23979009

RESUMEN

Three independent durum wheat mutant lines that show delayed leaf senescence or stay-green (SG) phenotype, SG196, SG310 and SG504, were compared to the parental genotype, cv. Trinakria, with respect to the photosynthetic parameters and the cellular redox state of the flag leaf in the period from flowering to senescence. The SG mutants maintained their chlorophyll content and net photosynthetic rate for longer than Trinakria, thus revealing a functional SG phenotype. They also showed a better redox state as demonstrated by: (1) a lower rate of superoxide anion production due to generally higher activity of the antioxidant enzymes superoxide dismutase and catalase in all of the SG mutants and also of the total peroxidase in SG196; (2) a higher thiol content that can be ascribed to a higher activity of the NADPH-providing enzyme glucose-6-phosphate dehydrogenase in all of the SG mutants and also of the NADP(+)-dependent malic enzyme in SG196; (3) a lower pro-oxidant activity of lipoxygenase that characterises SG196 and SG504 mutants close to leaf senescence. Overall, these results show a general relationship in durum wheat between the SG phenotype and a better redox state. This relationship differs across the different SG mutants, probably as a consequence of the different set of altered genes underlying the SG trait in these independent mutant lines.


Asunto(s)
Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triticum/fisiología , Catalasa/metabolismo , Clorofila/metabolismo , Flores/enzimología , Flores/genética , Flores/fisiología , Genotipo , Mutación , NADP/metabolismo , Peroxidasa/metabolismo , Fenotipo , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Transpiración de Plantas/fisiología , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Triticum/enzimología , Triticum/genética
17.
BMB Rep ; 46(8): 391-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23977986

RESUMEN

The ATP-inhibited Plant Mitochondrial K(+) Channel (PmitoKATP) was discovered about fifteen years ago in Durum Wheat Mitochondria (DWM). PmitoKATP catalyses the electrophoretic K(+) uniport through the inner mitochondrial membrane; moreover, the co-operation between PmitoKATP and K(+)/H(+) antiporter allows such a great operation of a K(+) cycle to collapse mitochondrial membrane potential (ΔΨ) and ΔpH, thus impairing protonmotive force (Δp). A possible physiological role of such ΔΨ control is the restriction of harmful reactive oxygen species (ROS) production under environmental/oxidative stress conditions. Interestingly, DWM lacking Δp were found to be nevertheless fully coupled and able to regularly accomplish ATP synthesis; this unexpected behaviour makes necessary to recast in some way the classical chemiosmotic model. In the whole, PmitoKATP may oppose to large scale ROS production by lowering ΔΨ under environmental/oxidative stress, but, when stress is moderate, this occurs without impairing ATP synthesis in a crucial moment for cell and mitochondrial bioenergetics.


Asunto(s)
Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Triticum/metabolismo , Adenosina Trifosfato/metabolismo , Potencial de la Membrana Mitocondrial , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
18.
Plant Sci ; 199-200: 91-102, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23265322

RESUMEN

The activity of mitochondrial phospholipase A(2) (PLA(2)) was shown for the first time in plants. It was observed in etiolated seedlings from durum wheat, barley, tomato, spelt and green seedlings of maize, but not in potato and topinambur tubers and lentil etiolated seedlings. This result was achieved by a novel spectrophotometric assay based on the coupled PLA(2)/lipoxygenase reactions using 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine as substrate; the mitochondrial localisation was assessed by checking recovery of marker enzymes. Durum wheat mitochondrial PLA(2) (DWM-PLA(2)) showed maximal activity at pH 9.0 and 1mM Ca(2+), hyperbolic kinetics (K(m)=90±6µM, V(max)=29±1nmolmin(-1)mg(-1) of protein) and inhibition by methyl arachidonyl fluorophosphonate, 5-(4-benzyloxyphenyl)-4S-(7-phenylheptanoylamino)pentanoic acid and palmityl trifluoromethyl ketone. Reactive oxygen species had no effect on DWM-PLA(2), that instead was activated by about 50% and 95%, respectively, under salt (0.21M NaCl) and osmotic (0.42M mannitol) stress imposed during germination. Contrarily, a secondary Ca(2+)-independent activity, having optimum at pH 7.0, was stress-insensitive. We propose that the activation of DWM-PLA(2) is responsible for the strong increase of free fatty acids recently measured in mitochondria under the same stress conditions [Laus, et al., J. Exp. Bot. 62 (2011) 141-154] that, in turn, activate potassium channel and uncoupling protein, able to counteract hyperosmotic stress.


Asunto(s)
Mitocondrias/enzimología , Fosfolipasas A2/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/fisiología , Triticum/enzimología , Adaptación Fisiológica , Biomarcadores/metabolismo , Citosol/enzimología , Inhibidores Enzimáticos/farmacología , Cinética , Mitocondrias/fisiología , Modelos Teóricos , Ósmosis , Estrés Oxidativo , Inhibidores de Fosfolipasa A2 , Canales de Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sales (Química) , Plantones/enzimología , Plantones/fisiología , Especificidad por Sustrato , Triticum/fisiología , Agua/metabolismo
19.
J Food Sci ; 77(11): C1150-5, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23057788

RESUMEN

UNLABELLED: Antioxidant activity (AA) of quinoa (Chenopodium quinoa Willd.) seeds, as well as of durum wheat (Triticum turgidum L. ssp. durum Desf.) and of emmer (T. turgidum L. ssp. dicoccum Schübler) grains, was evaluated by studying hydrophilic (H), lipophilic (L), free-soluble (FSP) and insoluble-bound (IBP) phenolic extracts using the new lipoxygenase/4-nitroso-N,N-dimethylaniline (LOX/RNO) method, able to simultaneously detect different antioxidant mechanisms, as well as using the Oxygen Radical Absorbance Capacity (ORAC) and the Trolox Equivalent Antioxidant Capacity (TEAC) assays, which measure the scavenging activity against peroxyl and ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate)] radicals, respectively. The species under study were compared with respect to the sum of AA values of H, L and FSP extracts (AA(H+L+FSP)), containing freely solvent-soluble antioxidants, and AA values of IBP extracts (AA(IBP)), representing the phenolic fraction ester-linked to insoluble cell wall polymers. The LOX/RNO and ORAC methods measured in quinoa flour a remarkable AA(H+L+FSP) higher than durum wheat, although lower than emmer; according to the same assays, the IBP component of quinoa resulted less active than the durum wheat and emmer ones. The TEAC protocol also revealed a high AA(H+L+FSP) for quinoa. Interestingly, the ratio AA(H+L+FSP)/AA(H+L+FSP+IBP), as evaluated by the LOX/RNO and ORAC assays, resulted in quinoa higher than that of both durum wheat and emmer, and much higher than durum wheat, according to the TEAC protocol. This may suggest that antioxidants from quinoa seeds may be more readily accessible with respect to that of both the examined wheat species. PRACTICAL APPLICATIONS: Quinoa seeds may represent an excellent source of natural antioxidant compounds and, in particular, of the free-soluble antioxidant fraction. These compounds may improve nutritive and health-beneficial properties of quinoa-based gluten-free products, thus expanding interest for quinoa utilization from celiac patients to the general population.


Asunto(s)
Antioxidantes/química , Chenopodium quinoa/química , Triticum/química , Benzotiazoles/metabolismo , Harina/análisis , Modelos Lineales , Lipooxigenasa/metabolismo , Compuestos Nitrosos/metabolismo , Peróxidos/metabolismo , Fenoles/análisis , Especies Reactivas de Oxígeno/metabolismo , Semillas/química , Ácidos Sulfónicos/metabolismo
20.
Plant Cell Environ ; 34(12): 2093-108, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21819416

RESUMEN

Durum wheat mitochondria (DWM) possess an ATP-inhibited K(+) channel, the plant mitoK(ATP) (PmitoK(ATP) ), which is activated under environmental stress to control mitochondrial ROS production. To do this, PmitoK(ATP) collapses membrane potential (ΔΨ), thus suggesting mitochondrial uncoupling. We tested this point by studying oxidative phosphorylation (OXPHOS) in DWM purified from control seedlings and from seedlings subjected both to severe mannitol and NaCl stress. In severely-stressed DWM, the ATP synthesis via OXPHOS, continuously monitored by a spectrophotometric assay, was about 90% inhibited when the PmitoK(ATP) was activated by KCl. Contrarily, in control DWM, although PmitoK(ATP) collapsed ΔΨ, ATP synthesis, as well as coupling [respiratory control (RC) ratio and ratio between phosphorylated ADP and reduced oxygen (ADP/O)] checked by oxygen uptake experiments, were unaffected. We suggest that PmitoK(ATP) may play an important defensive role at the onset of the environmental/oxidative stress by preserving energy in a crucial moment for cell and mitochondrial bioenergetics. Consistently, under moderate mannitol stress, miming an early stress condition, the channel may efficiently control reactive oxygen species (ROS) generation (about 35-fold from fully open to closed state) without impairing ATP synthesis. Anyway, if the stress significantly proceeds, the PmitoK(ATP) becomes fully activated by decrease of ATP concentration (25-40%) and increase of activators [free fatty acids (FFAs) and superoxide anion], thus impairing ATP synthesis.


Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , Proteínas de Plantas/metabolismo , Canales de Potasio/metabolismo , Triticum/metabolismo , Adenosina Trifosfato/biosíntesis , Concentración de Iones de Hidrógeno , Manitol , Potencial de la Membrana Mitocondrial , Ósmosis , Oxígeno/metabolismo , Potasio/metabolismo , Plantones/metabolismo , Cloruro de Sodio , Estrés Fisiológico , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...